Problem 7.31

This is a very simple, basic problem designed to introduce you to kinetic energy.

a.) What is the kinetic energy of a particle of mass .600 kg moving at 2.00 m/s?

KE =
$$\frac{1}{2}$$
 mv²
= $\frac{1}{2}$ (.600 kg)(2.00 m/s)²
= 1.20 J

b.) With 7.50 joules of kinetic energy, what is its velocity?

KE =
$$\frac{1}{2}$$
mv² = (7.50 J)

$$\Rightarrow v = \left[2\frac{KE}{m}\right]^{1/2}$$

$$= \left[2\frac{(7.50 \text{ J})}{(.600 \text{ kg})}\right]^{1/2}$$
= 5.00 m/s

NOTE: This should be abundantly clear, but if it is not, kindly note that the only relationship you need to remember here is $KE = \frac{1}{2} mv^2$. Additionally memorizing that $v = \left[2 \frac{KE}{m} \right]^{1/2}$ is just plain dumb. Again, this should be obvious; I'm just saying . . .

c.) What is the net work done by the force that moves the body between those two velocities?

$$W_{\text{net}} = \Delta KE$$

$$\Rightarrow W_{\text{F}} = \frac{1}{2} \text{mv}_{2}^{2} - \frac{1}{2} \text{mv}_{1}^{2}$$

$$= \frac{1}{2} (.600 \text{ kg}) (5.00 \text{ m/s})^{2} - \frac{1}{2} (.600 \text{ kg}) (2.00 \text{ m/s})^{2}$$

$$= 6.30 \text{ J}$$

Note: I've done this the complete way to show you the math. An obviously quicker way would have been:

$$W_{net} = \Delta KE = KE_2 - KE_1$$

 $\Rightarrow W_{net} = (7.50 \text{ J}) - (1.20 \text{ J}) = (6.30 \text{ J})$

1.)